A Triangular-Based Branch and Bound Method for
Nonconvex Quadratic Programming and the
Computational Grid

JEFF LINDEROTH

Industrial and Systems Engineering

ILLEHIGH Lehigh University

UNTVERSITY jtl3@lehigh.edu

ARGONNE GLOBAL OPTIMIZATION THEORY INSTITUTE SEPTEMBER 9, 2003

How This Talk Came to Be... I

January 9, 2003

‘‘We’re thinking of writing an NSF
proposal. What are you working on
these days, Jeff?’’

“‘I have begun preliminary work on a
branch-and-bound method for a global
optimization problem that relies on
(convex) quadratic relaxations.
Having a simple API to be able to

build the nonlinear relaxations on

the fly during the branch-and-bound
process would be something very

useful for this problem’’

The Fundamental Theorem of email I

Theorem 1.

Mentioning a topic off-handedly in email about a subject you are

planning on pursuing in research does not make you an expert in
the field.

Theorem 2.

Mentioning by email that you “have begun preliminary work” on a
subject doesn’t mean that you will have anything useful to say
about that subject in nine months

Proofs. (By picture)
g _:F-_. “

Q.E.D.

Jeff’s Main Summer Activities I

Feeding New Son Jacob

* Parallel B&B for (non)convex QCQP not a top summer priority

Outline I

e Nonconvex Quadratic Programming

o Relaxations with convex/concave envelopes of bilinear
functions

o Formulae for envelopes over triangles
o Why triangles are good

o How not to solve the resulting relaxations

e The Computational Grid
o Brief Introduction

¢ Branch-and-bound on the Computational Grid
¢ The Quadratic Assignment Problem

o Special challenges for branch-and-bound methods for
non-discrete problems on the computational grid

(Nonconvex) QCQPI

R, @)
subject to
qr (CIZ) by VkE el
qr (x) = by Vk € &
r < u
x > |
where

ge(z) = ()Tz+27Q%x Vke{0U Z U¢&}
e | and u are finite

e gr(x) could be convex, concave, or nonconvex

Caution I

e 'm certainly not an expert in this area.
e I do know that these problems are very hard from a
computational standpoint

o QCQP generalizes integer programming and lots of other
hard problems.

o Problems with a tens of variables (or tens of quadratic

terms) are about the limit of what can be solved

* Solving these problems may require a large amount of
computing resources—The computational grid!

Solving QCQP I

Popular wes» method is to use convex and concave envelopes.
Consider quadratic term z;x;, for (z;,x;) € Q = [l;, w;| X 15, u;].
& L 4 Z max{lz-a:j + leCZ' — lilj,uixj + Ujlq — ’LLin}
& L 4 S mln{lzx] -+ UjLg — liuj, UG 5 + lsz' — uzlj}
These functions are (resp.) the convex and concave envelope of

the function z;x; over [l;, u;| % [l;,u;]. (McCormick ’76,
Al-Khayyal and Falk, ’83)

vexq (f)—Convex Envelope of f over (—Pointwise supremum
of convex underestimators of f over (2.

cavq (f)—Concave Envelope of f over {—Pointwise infimum of
concave overestimators of f over ().

(LP) Relaxation of QCQPI

min g c X +—E g Zi
1<z<u ’ (Q” v

subject to

dodmi+ Y Y Qg

Z ciTi + Z Z Q5 %is

i=1 i=1 j=1

Zij — lz-acj — lja:z- -+ l@lj
Zij — UiLj — UjT5; + Ui Uj
Zij — lia:j — U;jT; + li?JJj

Zz'j — uixj — leUZ' —|— uilj

'V

ININ IV IV

1=1 5=1
by Vk el
by Vk € £
0 Vi=1,...
0 Vi=1,..
0 Vi=1,...
0

Vi=1,...

Jn, g =1,...
Ln,y=1,...
M, g =1,...

n,g=1,...

Worth 1000 Words?—Part I I

x*y

Worth 1000 Words?—Part 11 I

Branching I

o In LP relaxation, z;; = z;x; Vx;,z; € 0f.

o If z;; # x;x;, we branch. Two suggested branching schemes

I 1V

Triangle-Based Branching I

e I'd like to propose a triangular-based branching scheme...

A

e In order to do this, we need formulae for cav4 g ¢ p(z;x;) and

vexa,B,c,p(TiT;)

Concave Envelope Formulae I

l .

Let AB = Qn{(xi,z;)|v; —u; < -2 1;‘7 (i +1:)}
Uj i
l .

Let CD = Qn{(x;,zj)|z; —u; > fi 1;] (z: +1:) }

T drdr, Otherwise

Ui U4 leCZ = Uiy L5 = Uy

CaVCD JZZZCJ 2

2
COF+Ci%i+C;5T;+CijTiT5+C;2T5 +C;2T]

do —|—d@ X —|—d3 acj

I, if 2; = lj,x; =1
CaVAB xzxﬂ cotciTitcjritcijriritc,2 xf+cj2x§ :
{ Otherwise

Messy Definitions for Completeness I

Coef. cavap cavep
Co —lizl? + liluu; uz2 ? — liljuuy
C; —lilju; — uug + 2l?li —2uju7; + Liuuy + Lilug
C; —lilju; — luug + 2lz-2lj —Zu%uj + Liwuy + Liluyg
Cij uiu; — Uil uz-uj — Uil
C;2 Liu; — ZJQ- j — lju;
Cj2 Liu; — l,? ? l;u;
d —liu; — uily + 2015 —2u;u; + Liuy + L,
d; u; — lj u; — lj
d; u; — I; u; — I

Now Vex .

e You can likewise derive formulae for vexpc(x;x;) and

vVeXAD (l’ﬂ%)

e [won’t bore you with the formulae. For 2 = [0, 1] x [0, 1],

Ly
VCXBC'(CE’Z'.CC]') = T — 20 & 1
i J
T
VGXAD<ZC7;QSJ') =

0.25
02
0.15 |
01

0.05

cav Pics .

(cY)xry) ———

(1-2%-2%y+X*y+X*X+Y*Y) (X +y-2)

*

This Just In... I

Recall, I said I was not an expert...

The convex envelope formulae appeared implictly in [Sherali
and Alameddine ’90].

They said they were planning on developing an algorithm using
these results, but I don’t think they ever did.

[claim that this would be a very good idea.

Why Triangles Are Good I

e Just like integer programming (and maybe even more so0), a
relaxation is good if it is tight.

* In this case, we can explicity calculate a meaningful measure of
relaxation goodness (n) over an arbitrary region I.

nr = /(cavp(xixj) — VeXI‘(CL'z‘ZIZj))dZCidZIJj.
r

Branching Schemes I

e For Example: (x;,x;) € |0,2] x [0,2]. Consider two branching
schemes...
[1l C
B D
| \Y A
Mo,2]x[0,2] = 8/3
Rectangle = /1 T 111 +nrir v = 2/3
Mriangle = 74 T 18 +nc +np = 4/9

e A branch-and-bound algorithm based on triangular subdivisions may
be quite good!

Barriers to Triangular B&B Algorithm I }

/

e How to (easily, at least for prototyping purposes) interface B&B
C+ + driver code with existing NLP software to solve
relaxations?

* COIN to the rescue!
o NLPAPI (a very recent addition to COIN) is a C API to NLP
software.

e Lancelot
e IPOPT—Very, very, very recently (like three days ago)

e This is great, but there is a more fundamental barrier to using
NLP in a B&B algorithm...

NLP Stinks! I

e NLP is quite slow.
o This is largely a function of NLPAPI/Lancelot
¢ The entire problem is built from scratch every time, writing
out SIF files, before calling Lancelot
e NLP is sometimes wrong(!?!?!)

e The envelope functions are not differentiable everywhere on
the boundary.

e They have the “wrong” curvature outside of the region of
interest

e NLP sometime says, “I don’t think your problem has a
feasible solution, but I'm not too sure.”

It’s Probably My Fault I

e NLP doesn’t stink. I just couldn’t resist putting up that slide.
e It’s the wrong hammer for the job.
e The envelope functions I presented have a second-order cone

representation.

o Thanks go to Kurt Anstreicher for making me believe that
there really was a SOC representation of the envelope
functions

o Thanks go to Masakazu Muramatsu for showing me how
these things work.

Ice Cream Cone (Symmetric Cone) Programming'

min{c’ z|Az = b,z € K}
e /IC C R" is a symmetric cone

e Quadratic cone in k" :

1=2

/Cg: xé%”:xlz\Zx%

e SOCP has a nice duality theory — It can tell me (with
confidence) that a problem is infeasible

e SOCP solvers are robust

e I think it should reasonable to embed a SOCP (or even an SDP)
solver into a branch and bound algorithm.

SOC Representation (Example) I

e Imagine 2 = |0, 1] x |0, 1]

e Restrict (z;,z;) € B={(x;,2;)|zv; < zj,z; +x; <1}

2

— Zl] Z CCi—CCj—Fl’ZZj S r+y
5 Zij—l—l—ZEj—l—LUi
€T
Zis > L T, Ti) EB < 2%, c K3
zg_xi_xj_I_la(z;]) 7 q
zz-j—l—l—xj—xi
2$7;—|-$j—zij
Ty 3
Zijgx—ﬂv(xiaxj)eB e 2z; c Ky
n J ¥ _

e [am going to start talking about “The Grid”—Probably a more
interesting topic

The Computational Grid I

‘A Grid is a hardware and software infrastructure that

provides dependable, consistent, and pervasive access to

resources to enable sharing of computational resources’’

e Analogy is to power grid
¢ Computational resources are ubiquitous

¢ Their use could/should be transparent to the user

Building a Grid

L o

e There have been lots of software tools that provide necessary
grid services...

& Resource scheduling
& Fault-detection

& Remote execution

¢ One problem remains: GREED!

¢ Most people don’t want to contribute “their” machine!

* Condor is used to build the Grid!

What is Condor? I

e Manages collections of “distributively owned” workstations

o User need not have an account or access to the machine

o Workstation owner specifies conditions under which jobs are
allowed to run—Jobs must vacate when user claims
machine!

o All jobs are scheduled and “fairly” allocated among the pool

e How does it do this?
& Scheduling/Matchmaking
¢ Jobs can be checkpointed and migrated

¢ Remote system calls provide the originating machines
environment

Grid-Enabled B&B I

e Condor gives us the infrastructure from which to build a grid
(the spare CPU cycles),

e We still need a mechanism for controlling the
branch-and-bound process on the Grid

e Don’t lose a portion of the branch-and-bound tree when a
process vacates

e Do make use of additional resources as they come online

* To make parallel branch-and-bound fault-tolerant, we could
(should?) use the master-worker paradigm

e What is the master-worker paradigm, you ask?

Master

e Master assigns
tasks to the
workers

e Workers perform
tasks, and report
results back to
master

e Workers do not

communicate
(except through
the master)

*

%

— Goux, Kulkarni, Linderoth, Yoder
A set of abstract C+ + classes
User writes 10 functions

MW...
o Interacts with resource management software (Condor)
o Interacts with message passing software (PVM, Files)
¢ Ensures that all tasks are scheduled and completed
o All these complexities are hidden from the user

I'm actively looking for new users and suggestions for
additional functionality

MWInterface I

e MWMaster
¢ get_userinfo()
¢ setup_initial_tasks()
¢ pack_worker_init_data()

¢ act_on_completed_task()

e MWTask
¢ (un)pack_work

¢ (un)pack_result

o MWWorker
¢ unpack worker_init _data()

o execute_task()

2=

MWApplications I M
)}

MWMINLP (Goux, Leyffer, Nocedal) — A branch and bound
code for nonlinear integer programming

MWLShaped (Linderoth, Shapiro, Wright) — A cutting plane
and verification code for linear stochastic programming

FATCOP (Chen, Ferris, Linderoth) — A branch and cut code for
linear integer programming

MWOQAP (Anstreicher, Brixius, Goux, Linderoth) — A branch and
bound code for solving the quadratic assignment problem

MWQPBB (Linderoth) — The rudimentary, incomplete,
nonsensical code I currently working on

... (Your application here) ...

The Quadratic Assignment Problem I

min} > aisbuiiye(s) +) Cinti)
1=1

i=1 j=1
Loc 1 e QAP is NP-“Super”-hard.
o TSP :n > 16,000
Fac 2 Loc 2 n
Fac 1 o QAP :n =25

Loc 4 e Branch and Bound is the
Loc3 method of choice, but

Fac 3 :
Fac 4 very few tight, computable,

bounds exist.

Features of QAP B&B Algorithm I

Convex quadratic programming relaxation.

¢ Solved using Frank-Wolfe algorithm.

Use “polytomic” branching, based on one facility or one
location.

Exploit symmetry in branching

Uses (extensively) strong branching:

o Tentatively branch on each facility/location to see which
branching choice will be best

Implement using MW to run on the Computational Grid

MW Implementation I

e Fitting the B & B algorithm into the master-worker paradigm is
not groundbreaking research

e We must avoid “contention” at the master

HereisaTask

All The Queueing Theory I Know'

e We can reduce contention in two ways
1. Increase the service rate

2. Reduce the arrival rate

~ A parallel depth-first oriented strategy achieves these goals.
& Available worker is given “deepest” node by master

o Worker examines the subtree rooted at this node in a
depth-first fashion for ¢ seconds.

The Holy Grail! I

e (NUG30) (n = 30) has been the “holy-grail” of computational
QAP research for > 30 years

e Using an old idea of Knuth, we estimated the CPU time
required to solve NUG30 to be 5-10 years on a fast workstation

= We’d better get a pretty big Grid!

Our Computational Grid I

Number Type Location
414 Intel/Linux Argonne
96 SGl/Irix Argonne
1024 SGI/Irix NCSA
16 Intel/Linux NCSA
45 SGI/Irix NCSA
246 Intel/Linux Wisconsin
146 Intel/Solaris Wisconsin
133 Sun/Solaris Wisconsin
190 Intel/Linux Georgia Tech
94 Intel/Solaris Georgia Tech
54 Intel/Linux Italy (INEN)
25 Intel/Linux New Mexico
5 Intel/Linux Columbia U.
10 Sun/Solaris Columbia U.
12 Sun/Solaris Northwestern
2510

NUG30 is solved! I

14,5, 28,24, 1, 3, 16, 15, 10, 9, 21, 2, 4, 29, 25, 22, 13, 26, 17, 30, 6, 20, 19, 8, 18, 7, 27, 12, 11, 23

“MY FATHER USED 3.46 x 10% CPU SECONDS, AND ALL I GOT WAS
THIS LOUSY PERMUTATION”

Wall Clock Time: 6:22:04:31
Avg. # Machines: 653
CPU Time: ~ 11 years
Nodes: 11,892,208,412
LAPs: 574,254,156,532
Parallel Efficiency: 92%

Workers

1000

800

600

400

200

Workers I

6/9 6/10

6/11

6/12
Time

6/13

6/14

6/15

KLAPS

1800

1600

1400

1200

1000

800

600

400

200

|

6/9

6/10

6/11

6/12
Time

6/13

6/14

6/15

Parallel DFS worked Great for QAP I

e Kept up to 1000 workers

555 busy > 90% of the time in a
ﬂ | H\% very dynamic grid environ-
00 | f M MMV WW M\ (w”' i ;LM L ment

§ 600 w NVW N/LVM r\wﬂ h rﬁ\ JM p M W
YT
| .

i %‘ e We knew a priori a very

° 6}9 6/2!.0 6/2!.1 6/‘12 6/‘13 6/‘14 6/‘15 gOOd SOIUtion

Time

e Tree depth was bounded

Problems with DFS for Global Optimization I

e Tree depth not bounded!

e B&B algorithms may not converge unless you search nodes
in a best first fashion (or at least you have to branch on the
node with the best lower bound “every once in a while”).

e We may not know a good solution

* Use NLP solvers to try and find feasible (locally optimal)
solution

How Bad Can Depth-First Search Be? I

Ex: Nonconvex quadratic programming formulation of max clique
problem on ten nodes.

¢ Naive implementation

o Two-way rectangular branching

e Depth-First Search—> 3, 000, 000 nodes

e Best-First Search— ~ 30, 000 nodes

How Bad Can Best-First Search Be? I

Ex: Nonconvex quadratic programming formulation of max clique
problem on 200 nodes.

¢ Naive MW (Parallel) Implementation running on a

Computational Grid of around 100 nodes

e Master processes crashes, since the number of nodes in the list
exhausts the computer memory (1GB).

e Huge unexplored subtree messages passed from Workers to
Master

Conclusions I

This page intentionally left blank

The Future of Global Optimization'

Disclaimer: This really comes from the perspective of an integer
programmer — not someone intimately in touch with the field!

e I think that many of the great advances in deterministic global
optimization have come by including more IP technology into the
solvers

e But I think maybe more could be done!

¢ Cutting Planes

¢ Nonlinear inequalities?
¢ Can one use RLT (Sherali et. al) cuts in a
“separate-when-needed” manner

¢ Strong Branching

& Stronger Preprocessing

e Run it on the Grid!

(My) Future Work'

Implement SOCP relaxations.

Add obvious (but very important) bells-and-whistles to current
code.

o Strong Preprocessing

o Strong Branching
How to balance depth-first with best-first search on the Grid?

Try to solve some big instances!

¢ I'm here looking for big, unsolved, interesting problems!

